

ECE 344

MICROWAVE FUNDAMENTALS PART1-Lecture 4

Dr. Gehan Sami

Terminated TL

- Input impedance, two formula
- TL repeats mag. of Voltage, mag. of Current, Z every $\lambda / 2$
- EX1
-Total voltage and current on terminated TL
-Vmax, lmax, Vmin, lmin
-Reflection coefficient
- Ex2 terminated and sourced TL
- Equivalent input impedance for open circuit , short circuit and matched TL
- Equivalent TLs to lumped elements: inductors and capacitors.
- Input impedance for $\lambda / 2$ and $\lambda / 4$
- Quarter wavelength transformer
- Compute input impedance for TL with lumped elements or different connections.
- Voltage on TL
- SWR

Terminated Transmission Line

Terminating impedance (load)

Ampl. of voltage wave
propagating in negative z
direction at $z=0$.

Where do we assign $z=0$?

The usual choice is at the load.

Note: The length ℓ measures distance from the load: $\quad \ell=-Z$

Terminated Transmission Line (cont.)

$$
V(z)=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{+\gamma z}
$$

Terminating impedance (load)

The current at $z=-\ell$ is then

$$
I(-\ell)=\frac{V_{0}^{+}}{Z_{0}} e^{\gamma \ell}-\frac{V_{0}^{-}}{Z_{0}} e^{-\gamma \ell}
$$

$\ell \equiv$ distance away from load

Terminated Transmission Line (cont.)

Total volt. at distance ℓ

from the load

$$
\left.\begin{array}{ll}
V(-\ell)=V_{0}^{+} e^{\gamma \ell}+V_{0}^{-} e^{-\gamma \ell}=V_{0}^{+} e^{\gamma \ell}\left(1+\frac{V_{0}^{-}}{V_{0}^{+}} e^{-2 \gamma \ell}\right.
\end{array}\right)
$$

Ampl. of volt. wave prop. towards load, at the load position ($z=0$).

$$
=V_{0}^{+} e^{\gamma \ell}\left(1+\Gamma_{L} e^{-2 \gamma \ell}\right)
$$

Similarly,

$$
I(-\ell)=\frac{V_{0}^{+}}{Z_{0}} e^{\gamma \ell}\left(1-\Gamma_{L} e^{-2 \gamma \ell}\right)
$$

Terminated Transmission Line (cont.)

$$
\begin{aligned}
& V(-\ell)=V_{0}^{+} e^{\gamma \ell}\left(1+\Gamma_{L} e^{-2 \gamma \ell}\right) \\
& I(-\ell)=\frac{V_{0}^{+}}{Z_{0}} e^{\gamma \ell}\left(1-\Gamma_{L} e^{-2 \gamma \ell}\right) \\
& Z(-\ell)=\frac{V(-\ell)}{I(-\ell)}=Z_{0}\left(\frac{1+\Gamma_{L} e^{-2 \gamma \ell}}{1-\Gamma_{L} e^{-2 \gamma \ell}}\right)
\end{aligned}
$$

Input impedance seen "looking" towards load at z

Terminated Transmission Line (cont.)

At the load $(\ell=0)$:

$$
\begin{aligned}
& Z(0)=Z_{0}\left(\frac{1+\Gamma_{L}}{1-\Gamma_{L}}\right) \equiv Z_{L} \Rightarrow \Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \\
& \text { Recall } \quad Z(-\ell)=Z_{0}\left(\frac{1+\Gamma_{L} e^{-2 \gamma \ell}}{1-\Gamma_{L} e^{-2 \gamma \ell}}\right) \\
& \text { Thus, } \\
& Z(-\ell)=Z_{0}\left(\frac{1+\left(\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}\right) e^{-2 \gamma \ell}}{1-\left(\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}\right) e^{-2 \gamma \ell}}\right)
\end{aligned}
$$

Terminated Lossless Transmission Line

$$
\gamma=\alpha \alpha+j \beta=j \beta
$$

$$
V(-\ell)=V_{0}^{+} e^{j \beta \ell}\left(1+\Gamma_{L} e^{-2 j \beta \ell}\right)
$$

Impedance is periodic with period $\lambda_{g} / 2$

$$
I(-\ell)=\frac{V_{0}^{+}}{Z_{0}} e^{i \beta \ell}\left(1-\Gamma_{L} e^{-2 j \beta \ell}\right)
$$

tan repeats every π

$$
Z(-\ell)=Z_{0}\left(\frac{1+\Gamma_{L} e^{-2 i j \ell}}{1-\Gamma_{L} e^{-2 j \beta \ell}}\right)
$$

$$
\begin{aligned}
& \beta \ell=\pi \\
& \frac{2 \pi}{\lambda_{g}} \ell=\pi \\
& \Rightarrow \ell=\lambda_{g} / 2
\end{aligned}
$$

$$
Z(-\ell)=Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan (\beta \ell)}{Z_{0}+j Z_{L} \tan (\beta \ell)}\right)
$$

$\tan (\beta l)=\tan (\beta l++1)$

$$
\beta l_{2}=\beta l_{1}+\pi
$$

$$
\begin{aligned}
& \beta\left(l_{2}-l_{1}\right)=\pi \\
& l_{2}-l_{1}=\frac{\lambda}{2}
\end{aligned}
$$

Example 1 USE ADS to:
-draw magnitude voltage across the line $\beta \mathrm{l}=2 \pi$ or $\ell=\lambda$
-draw magnitude current across the line
-draw impedance across the line observe $\operatorname{mag}(\mathrm{V}), \operatorname{mag}(\mathrm{I}), \mathrm{Z}$ every $\ell=\lambda / 2$
-Compute magnitude of voltage , current at load. -verify input impedance at load from voltage/current Equals load impedance. -find max voltage value and its position -find min voltage value and its position

Vac $=$ polar $(10,0) \mathrm{V}$ $\mathrm{f}=1 \mathrm{GHz}$

Terminated transmission line repeats its voltage mag.,current mag. and impedance each $\lambda / 2$

(a z=0
$v_{0}^{+}=5 v_{01 t} \quad z_{g}=z_{0}$
$u_{i}=u_{0}^{+}\left(1+\Gamma_{L}\right), \Gamma_{L}=\frac{z_{l}-z_{0}}{z_{L}+z_{0}}$
$v_{1}=5(1+0.678 \angle 85.43)$
$v_{1}=6.26 \quad 32.67$
$I_{1}=\frac{v_{0}^{+}}{Z_{0}}\left(1-\Gamma_{L}\right)=0.116 L-35.53$
$z_{1}=v_{1} / z_{1}=53.9<68.2$
$=Z_{L}$
$z_{L}=20+j 50=53.85 \angle 68.2$

$$
\left.\begin{array}{l}
V(l+\lambda / 2)=-V(l) \\
I(\rho+\lambda / 2)=-I(l)
\end{array}\right\} \quad \underset{\text { in }}{ }\left(l+\frac{\lambda}{2}\right)=Z_{\text {in }}(l)
$$

$$
v(l+\lambda)=v(l), T(l+\lambda)=I(l)
$$

for $\beta l=60^{\circ} \quad U_{0}^{+}=5 \quad \Gamma=0.678<85.43$ Find $V(\beta l=60), \quad I(\beta l=60), \quad Z(\beta l=60)$
foin

$$
\begin{aligned}
V & =U_{0}^{+} e^{j \beta l}\left(1+\Gamma e^{-2 j \beta l}\right) \\
& =5 \angle 60(1+0.678 \angle 85.43 \angle-120) \\
& =5.56+j 5 \cdot 79=8 \angle 46.13^{\circ} \\
I & =\frac{U_{0}+}{z_{0}} e^{j \beta l}\left(1-\Gamma e^{-2 j \beta l}\right) \\
& =\frac{5}{50} \angle 60 \\
& =-0.011+j 0.057=0.0586 \angle 101 \\
Z & \left.=\frac{V}{I}=\frac{8 L 46.13}{0.05!l}=78.48-j 11.7=136.6 \angle-54.9\right)
\end{aligned}
$$

$$
\begin{aligned}
& V_{0}^{+}=5 \text { Volt } \quad \Gamma_{L}=6.678185 .43 \\
& |V|=\left|V_{0}^{+}\right|\left|1+\left|\Gamma_{L}\right| e^{j \phi} e^{-2 j \beta l}\right| \\
& \left|v_{\text {max }}\right|=\left|V_{0}^{+}\right|\left(1+\left|r_{L}\right|\right)=5 \times 1.678=8.4 V_{0} \mid+ \\
& \left|V_{\min }\right|=\left|V_{0}^{+}\right|\left(1-\left|r_{L}\right|\right)=5 \times 0.322=1.6 V_{01 t} \\
& \operatorname{Max} @ q-2 \beta l=0 \rightarrow \beta l=\frac{85.43}{2}=42.7^{\circ} \\
& \mu_{\text {in }} @ \phi-2 \beta l=\pi \rightarrow \beta l=\frac{85 \cdot 43-180}{2} \\
& \text { at } l=\pi / 2 \beta \rho=180 \quad=-47.28+180
\end{aligned}
$$

$$
\begin{aligned}
& \text { as }\left|v\left(z+y_{2}\right)\right|=|V(z)| \text { or }\left|1+\left|r_{L}\right| e^{2} e^{-j \rho^{l}} e^{-2 j \mu 1 r_{0}}\right|=\left|1+\left|r_{L}\right| e^{j \phi} e^{-2 j \beta l}\right|
\end{aligned}
$$

